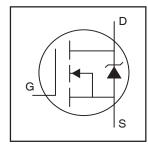
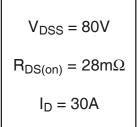
International Rectifier


AUTOMOTIVE MOSFET


IRLR2908PbFIRLU2908PbF

HEXFET® Power MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free

Description

Specifically designed for Automotive applications, this HEXFET ® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, low R0JC, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	39	Α	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig. 9)	28	•	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	30	1	
I _{DM}	Pulsed Drain Current ①	150	1	
P _D @T _C = 25°C	Maximum Power Dissipation	120	W	
	Linear Derating Factor	0.77	W/°C	
V_{GS}	Gate-to-Source Voltage	± 16	V	
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	180	mJ	
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ①	250	,	
I _{AR}	Avalanche Current ①	See Fig.12a,12b,15,16	Α	
E _{AR}	Repetitive Avalanche Energy ®		mJ	
dv/dt	Peak Diode Recovery dv/dt ③	2.3	V/ns	
TJ	Operating Junction and	-55 to + 175	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.3	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ®		40	·
$R_{\theta JA}$	Junction-to-Ambient		110	·

IRLR/U2908PbF

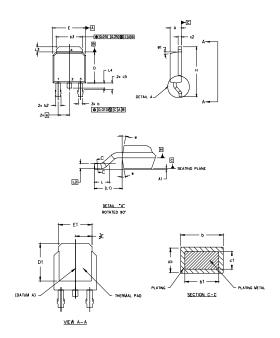
International
TOR Rectifier

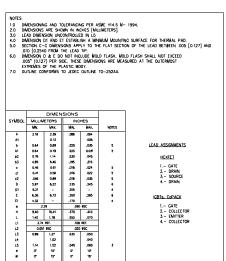
Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	80			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}/\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		0.085		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		22.5	28	mΩ	V _{GS} = 10V, I _D = 23A ④
		_	25	30	Ī	V _{GS} = 4.5V, I _D = 20A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.5	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	35			S	$V_{DS} = 25V, I_{D} = 23A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 80V, V_{GS} = 0V$
		_		250	1	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200	Ī	V _{GS} = -16V
Q_g	Total Gate Charge	_	22	33	nC	I _D = 23A
Q _{gs}	Gate-to-Source Charge	_	6.0	9.1	Ī	$V_{DS} = 64V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		11	17	Ī	$V_{GS} = 4.5V$
t _{d(on)}	Turn-On Delay Time		12		ns	$V_{DD} = 40V$
t _r	Rise Time	_	95			$I_D = 23A$
t _{d(off)}	Turn-Off Delay Time	_	36		Ī	$R_G = 8.3\Omega$
t _f	Fall Time	_	55			V _{GS} = 4.5V ④
L _D	Internal Drain Inductance		4.5		nΗ	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5		Ī	from package
						and center of die contact
C _{iss}	Input Capacitance		1890		pF	$V_{GS} = 0V$
Coss	Output Capacitance		260		Ī	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		35		Ī	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		1920		Ī	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		170		Ī	$V_{GS} = 0V, V_{DS} = 64V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		310		1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 64V$

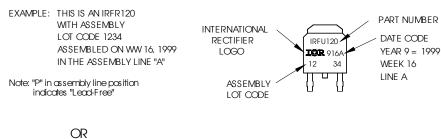
Diode Characteristics

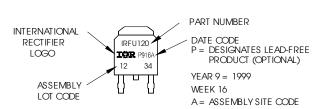
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			39		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			150		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 23A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		75	110	ns	$T_J = 25^{\circ}C$, $I_F = 23A$, $V_{DD} = 25V$
Q _{rr}	Reverse Recovery Charge		210	310	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsi	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)


Notes ① through ® are on page 11

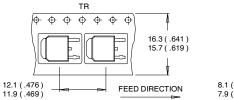

HEXFET® is a registered trademark of International Rectifier.

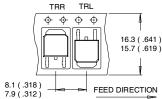
IRLR/U2908PbF


D-Pak (TO-252AA) Package Outline

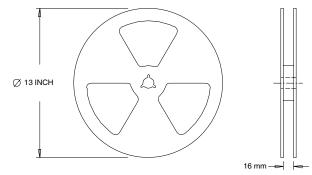

Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information





IRLR/U2908PbF


D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax}, starting T_J = 25°C, L = 0.71mH, R_G = 25Ω, I_{AS} = 23A, V_{GS} =10V. Part not recommended for use above this value.
- $\label{eq:loss_def} \mbox{ } \mbox{$
- ④ Pulse width \leq 1.0ms; duty cycle \leq 2%.
- \odot C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

This product has been designed and qualified for the Automotive [Q101] market.

